On the use of wavelet denoising and spike sorting techniques to process ENG signals recorded using intra-neural electrodes
نویسندگان
چکیده
Among the possible interfaces with the peripheral nervous system (PNS), intraneural electrodes represent an interesting solution for their potential advantages such as the possibility of extracting spikes from electroneurographic (ENG) signals. Their use could increase the precision and the amount of information which can be detected with respect to other processing methods. In this study, in order to verify this assumption, thin-film longitudinal intrafascicular electrodes (tfLIFE) were implanted in the sciatic nerve of rabbits. Various sensory stimuli were applied to the hind limb of the animal and the elicited ENG signals were recorded using the tfLIFEs. These signals were processed to determine whether the different types of information can be decoded. Signals were wavelet denoised and spike sorted. Support vector machines were trained to use the spike waveforms found to infer the stimulus applied to the rabbit. This approach was also compared with previously used ENG processing methods. The results indicate that the combination of wavelet denoising and spike sorting techniques can increase the amount of information extractable from ENG signals recorded with intraneural electrodes. This strategy could allow the development of more effective closed-loop neuroprostheses and hybrid bionic systems connecting the human nervous system with artificial devices.
منابع مشابه
A Brief Look into Spike Sorting Methods
Spike sorting is a class of techniques used in the analysis of electrophysiological data. Studying the dynamics of neural activity via electrical recording relies on the ability to detect and sort neural spikes recorded from a number of neurons by the same electrode. This article reviews methods for detecting and classifying action potentials, a problem commonly referred to as spike sorting.
متن کاملCan Wavelet Denoising Improve Motor Unit Potential Template Estimation?
Background: Electromyographic (EMG) signals obtained from a contracted muscle contain valuable information on its activity and health status. Much of this information lies in motor unit potentials (MUPs) of its motor units (MUs), collected during the muscle contraction. Hence, accurate estimation of a MUP template for each MU is crucial. Objective: To investigate the possibility of improv...
متن کاملGENERATION OF SYNTHETIC EARTHQUAKE RECORDS BY ARTIFICIAL INTELLIGENCE TECHNIQUES
For seismic resistant design of critical structures, a dynamic analysis, based on either response spectrum or time history is frequently required. Due to the lack of recorded data and randomness of earthquake ground motion that might be experienced by the structure under probable future earthquakes, it is usually difficult to obtain recorded data which fit the necessary parameters (e.g. soil ty...
متن کاملA COMPARATIVE ANALYSIS OF WAVELET-BASED FEMG SIGNAL DENOISING WITH THRESHOLD FUNCTIONS AND FACIAL EXPRESSION CLASSIFICATION USING SVM AND LSSVM
This work presents a technique for the analysis of Facial Electromyogram signal activities to classify five different facial expressions for Computer-Muscle Interfacing applications. Facial Electromyogram (FEMG) is a technique for recording the asynchronous activation of neuronal inside the face muscles with non-invasive electrodes. FEMG pattern recognition is a difficult task for the researche...
متن کاملWavelet-Based Spike Sorting of Muscle Spindle Afferent Nerve Activity Recorded With Thin-Film Intrafascicular Electrodes
The continuous complex wavelet transform offers a convenient framework for neural spike sorting. Results show that wavelet-based neural spike detection outperforms simple threshold detection, especially with signals with low signal to noise ratio. Classification of action potentials using their signatures in wavelet space performed as well as a classifier based upon principal components analysi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010